Improvements in manufacturing
Thanks to the innovations from Braunschweig, novel medication forms are becoming possible. The scientists can, for example, control properties such as adhesion to machine surfaces, which means that the use of release agents in medicine production can be dispensed with, thereby improving the properties of the product. In addition, modification of the surface with a “cold” plasma can improve the flowability of powders and create barrier layers. This in turn also leads to new possibilities – for example, the combination of several active ingredients in one tablet which would otherwise not be compatible with one another. In collaboration with the PVZ, the Fraunhofer IST will also carry out research into new processes such as 3D printing in combination with innovative plasma systems and new surface coatings. These are to become part of a new modular process chain for the production of such individualized medication forms. The Fraunhofer und TU Braunschweig scientists assume that this research will also result in improvements and innovation impulses for mass production.
New translational laboratory intensifies regional cooperation
With the new translational laboratory, which is to commence operation in 2021 and be continuously expanded, the TU Braunschweig and the Fraunhofer-Gesellschaft are further expanding their cooperation at the location. Together with partners from industry and the civil society, new production technologies are to be transferred into application. This will facilitate the entry of interested companies into the partnership-based technology and process development in this future market. Furthermore, the transfer of knowledge into industrial practice is to be supported through training concepts. Such a translational laboratory for the individualized production of pharmaceutical products does not yet exist in Germany.
“This is an important step in the systematic expansion of our competence in the field of pharmaceutical production and the intensification of regional cooperation with the PVZ,” said Prof. Dr. Michael Thomas, Head of Department at the Fraunhofer IST and member of the PVZ. In his department, novel plasma systems operating at atmospheric pressure and functional surfaces are developed and integrated into processes. “These plasma systems can be miniaturized very successfully and incorporated into process chains,” explained Dr. Kristina Lachmann, Group Manager of Surface Chemistry and Atmospheric Pressure Plasma Processes at the Fraunhofer IST. “As a result, during the production process it is possible to control in-situ functions such as adhesion or to generate barrier layers, thereby achieving individualized manufacturing,” explained Dr. Lachmann. “We already have the first industrial partners on board who want to build with us the basis of the modular platform for generative manufacturing of pharmaceuticals and to drive forward the development in the long term,” explained Prof. Dr. Michael Thomas.
At the PVZ, the staff are also excited about the fact that this platform is now being established. “We have been pursuing the approach of individualized medicine production for quite some time,” explains Prof. Dr.-Ing. Arno Kwade, Spokesman of the Board of the PVZ. “We are delighted that the Fraunhofer IST, as a regional partner, is driving this topic forward with the institutes of the PVZ and is hereby contributing its expertise in process-engineering and production technology as well as in functional surfaces as a new and important competence in order to successfully expedite this crucial branch of research at the PVZ.”
For the future, the partners are planning increased research into the digitization and monitoring of processes, as well as extensions to the development of new types of packaging concepts – thereby pursuing the aim of keeping processes transparent and comprehensible. As a result, it should be possible to reliably verify and document the quality of every single individual medication form and to track it all the way through to the point of ingestion.