In contrast to predominantly mechanical manufacturing processes, suitable and sufficiently cost-effective measurement technology does not yet exist in industrial electroplating. The product quality of coated components can therefore only be determined once the end product has been finished. At this point, it may no longer be possible to determine which parameter deviation(s) during the course of the production process is/are responsible for a reduction in quality. This is particularly problematic in the case of safety-relevant components – e.g. fastening elements – and, in particular, if the defect – e.g. material embrittlement caused by hydrogen created through electroplating – is only revealed during technical application.
Das innovative Messsystem soll eine systemangepasste, kostengünstige und industrietaugliche In-situ-Analytik der Prozessbäder mit KI-basierter Auswertung von Messdaten aus Prozess- und Anlagensteuerung, Zustandsparametern von Prozessaggregaten und sonstigen relevanten Daten verknüpfen. Zu entwickelnde intelligente Algorithmen des maschinellen Lernens sollen eine individuelle Anpassung des Messsystems auf die jeweiligen Beschichtungsprozesse ermöglichen.
In this project, an AI-based metrological system solution for industrial electroplating is being developed, with which all process parameters relevant for the digitalization of electroplating production processes can, for the first time, be provided cost-effectively and with sufficient accuracy. The core issue is therefore the replacement of a major part of the otherwise very expensive chemical analytics.